72 research outputs found

    Influence of spray drying suspension on the morphology of Fe-based oxygen carriers for chemical looping

    Get PDF
    Chemical looping reforming (CLR) and chemical looping combustion (CLC) are promising technologies with inherent CO2 capture for transforming fuels into syngas and energy respectively. Circulating oxygen carriers (OC) are used to transfer oxygen from mostly air to the fuel inside the process. Over the past years a variety of materials have been proposed for the role of oxygen carriers, ranging from bulk mineral powders to oxygen carrier particles engineered for shape, size and composition. Iron based materials are very promising and cost effective candidates with minor impact on the environment as compared to the toxic Ni-based OCs. Granulation by the industrial spray-drying technique is suitable for producing oxygen carrier particles with high sphericity and dimensions fit for the fluidized-bed reactors of the CL-process. The lifetime of the oxygen carriers in these reactors however strongly depends on their mechanical properties (as measured by the crushing strength and the attrition resistance) which is related with their morphology and porosity. As this morphology depends on the spray drying suspension, the relation between the additives used in the iron-based suspension and the morphology of the spray-dried particles is investigated in this work [1]. The influence of the concentration of the binder, dispersing agent and solids in the spray-drying suspensions and the intensity of the milling procedure on the morphology and microstructure of the resulting particles is studied by Hg-porosimetry, tapped density, optical microscopy and SEM. A controlled sintering treatment is used during post-processing of these spray-dried particles in order to further improve their mechanical properties before investigating their performance as oxygen carriers in the chemical looping process

    Development of new Mn-based oxygen carriers using MgO and SiO2 as supports for Chemical Looping with Oxygen Uncoupling (CLOU)

    Get PDF
    Chemical Looping with Oxygen Uncoupling (CLOU) is a technological adaptation of CLC, most applicable for the combustion of solid fuels. In the CLOU process, an oxygen carrier in the fuel reactor, avoiding the direct contact of the fuel with the air, releases the oxygen needed for the fuel combustion. The oxygen carrier is regenerated with air in the interconnected air reactor. The present work explores the behavior of the system Mn/Mg/Si as oxygen carriers for chemical-looping with oxygen uncoupling (CLOU). Six different mixed oxides of the system Mn/Mg/Si were investigated for the CLC/CLOU process. Materials were prepared by spray drying with different metal ratios used in the investigation. The properties of interest for the viability of these materials are the lattice oxygen supply for CLC and the gaseous oxygen release for CLOU, properties that were explored in a TGA. Further, the fluidization behavior and the mechanical resistance were investigated in a batch fluidized bed reactor. In the TGA it was observed that the most reactive oxygen carriers for the CLOU process were materials without Si in the structure, more specifically M24Mg76 and M48Mg51 which had a molar ratio of Mn/Mg of 0.17 and 0.51 respectively. It was also observed that for the oxygen carriers with Si in the composition, the regeneration was very poor. Oxygen carriers M24Mg76 and M48Mg51 were selected for batch fluidized bed reactor testing showing good behavior with respect to the CLOU reactivity, and mechanical stability. One of the materials, the M24Mg76 showed activation during the experiments in the batch fluidized bed reactor experiments, increasing the oxygen transport capacity by 20 % during the experiment. However, 10 vol% of O2 was needed to regenerate both oxygen carriers at 850 \ub0C. No agglomeration tendencies were seen, and the attrition rate was low, obtaining high-extrapolated lifetime values. The fact that highly reactive oxygen carriers can be made with cheap and highly available metals oxides, i.e. Mn and Mg, makes this system very promising and a possible alternative to benchmark Cu-based CLOU materials

    Sustainable Attrition-resistant oxygen carriers for chemical looping reforming by spray drying

    Get PDF
    Chemical looping reforming (CLR) and chemical looping combustion (CLC) are promising technologies with inherent CO2 capture for transforming fuels into syngas and energy respectively. Circulating oxygen carriers (OC) are used to transfer oxygen from mostly air to the fuel inside the process. Over the past years a variety of materials have been proposed for the role of oxygen carriers, ranging from bulk mineral powders to oxygen carrier particles engineered for shape, size and composition. A lot of attention has been focused towards the development of Ni-based oxygen carriers due to their good reactivity, conversion and mechanical stability. However the cost, susceptibility towards S-containing impurities and their toxicity are key drivers to develop Ni-free materials. Oxygen carriers based on Fe-oxides are promising because of their lower cost and diminished impact on health and environment. Nevertheless, they also need good thermo-chemo-mechanical properties and thus a sufficient lifetime to be applicable in industrial CL-processes. The longevity of the oxygen carriers in the coupled fluidised bed reactors can be limited by two factors, such as their fragmentation and attrition leading to smaller particles inhibiting their fluidisation as well as their chemical deactivation. Granulation by the industrial spray drying technique appears to yield oxygen carrier particles with high sphericity and good fluidization properties. In addition, a microstructure is obtained that on the one hand aims at thermo-chemo-mechanical integrity and high attrition resistance, and on the other hand at intimate contact between the solid and gaseous phases. However, spray-drying does not appear to be used for producing Fe-based OC thus far. This work emphasises the colloid chemistry of concentrated suspensions used for spray-drying, the development of Fe-based OC by granulation of primary raw materials and the subsequent processing and heat treatment of the oxygen carriers for hydrogen production by chemical looping. To reach the objectives, a systematic approach is used. At first the role of the preparation of the spray dry suspension and the granulation conditions on the morphology of the particles has been investigated. Secondly, the effect of the sinter process was studied. A correlation between tapped density, strength and attrition resistance of the heat-treated materials was observed. Finally, the chemical performance of these Fe-based oxygen carriers was examined in a small scale batch reactor. The chemical composition of the OC was (ex situ) monitored in view of the enhancement of the chemical properties and long term stability thereof by altering the composition and microstructure of synthesised oxygen carriers

    Development of stable oxygen carrier materials for chemical looping processes : a review

    Get PDF
    This review aims to give more understanding of the selection and development of oxygen carrier materials for chemical looping. Chemical looping, a rising star in chemical technologies, is capable of low CO2 emissions with applications in the production of energy and chemicals. A key issue in the further development of chemical looping processes and its introduction to the industry is the selection and further development of an appropriate oxygen carrier (OC) material. This solid oxygen carrier material supplies the stoichiometric oxygen needed for the various chemical processes. Its reactivity, cost, toxicity, thermal stability, attrition resistance, and chemical stability are critical selection criteria for developing suitable oxygen carrier materials. To develop oxygen carriers with optimal properties and long-term stability, one must consider the employed reactor configuration and the aim of the chemical looping process, as well as the thermodynamic properties of the active phases, their interaction with the used support material, long-term stability, internal ionic migration, and the advantages and limits of the employed synthesis methods. This review, therefore, aims to give more understanding into all aforementioned aspects to facilitate further research and development of chemical looping technology

    The buzz about bees and poverty alleviation: Identifying drivers and barriers of beekeeping in sub-Saharan Africa

    Get PDF
    The potential of beekeeping to mitigate the exposure of rural sub-Sahara African farmers to economic stochasticity has been widely promoted by an array of development agencies. Robust outcome indicators of the success of beekeeping to improve household well-being are unfortunately lacking. This study aimed to identify the key drivers and barriers of beekeeping adoption at the household level, and quantified the associated income contribution in three agro-ecological zones in Uganda. Beekeepers were generally the most economically disadvantaged people in the study areas and tended to adopt beekeeping following contact with non-government organisations and access to training. Whilst incomes were not statistically lower than their non-beekeeping counterparts; their mean household well-being scores were significantly lower than non-beekeeping households. The inability of beekeeping to significantly improve well-being status can in part be attributed to a lack of both training in bee husbandry and protective equipment provision such as suits, gloves and smokers. These are critical tools for beekeepers as they provide the necessary confidence to manage honey bees. Rather than focussing solely on the socio-economic conditions of farmers to effectively adopt beekeeping, future research should also attempt to evaluate the effectiveness of development agencies’ provision to the beekeeping sector

    Clara cell protein in bronchoalveolar lavage fluid: a predictor of ventilator-associated pneumonia?

    Get PDF
    INTRODUCTION: Clara cell protein 10 (CC-10) has been associated with inflammatory and infectious pulmonary diseases. This study evaluates CC-10 concentrations in bronchoalveolar lavage (BAL) fluid as a potential marker of ventilator-associated pneumonia (VAP). METHODS: Between January 2003 and December 2007, BAL fluid samples obtained from critically ill patients at the intensive care unit of the Maastricht University Medical Centre clinically suspected of having VAP were included. Patients were divided into two groups: (1) microbiologically confirmed VAP (the VAP group) and (2) microbiologically unconfirmed VAP (the non-VAP group). The concentration of CC-10 was measured by means of a commercially available enzyme-linked immunosorbent assay kit, and retrospective analysis was performed. Areas under the curve of receiver operating characteristic curves were calculated for CC-10 concentrations. RESULTS: A total of 196 patients (122 men, 74 women) were included. A total of 79 (40%) of 196 cases of suspected VAP were microbiologically confirmed. The median CC-10 concentration in the VAP group was 3,019 ng/mL (range, 282 to 65,546 ng/mL) versus 2,504 ng/mL (range, 62 to 30,240 ng/mL) in the non-VAP group (P = 0.03). There was no significant difference in CC-10 concentrations between patients treated with or without corticosteroids (P = 0.26) or antibiotic therapy (P = 0.9). The CC-10 concentration did not differ significantly between patients with Gram-positive versus Gram-negative bacteria that caused the VAP (P = 0.06). However, CC-10 concentrations did differ significantly between the late-onset VAP group and the non-VAP group. CONCLUSIONS: The CC-10 concentration in BAL fluid yielded low diagnostic accuracy in confirming the presence of VAP

    A numerical homogenisation strategy for micromorphic continua

    Get PDF
    Cellular materials are of special interest according to their peculiar mechanical properties. In this paper, special attention is paid to the simulation of size-dependent microtopological effects. We introduce a numerical homogenisation scheme for a two-scale problem dealing with a micromorphic continuum theory on the macroscale and a classical Cauchy continuum on the microscale. The transitions between both scales are obtained by projection and homogenisation rules derived from an equivalence criterion for the strain energy, also known as the Hill-Mandel condition

    When workplace unionism in global value chains does not function well : exploring the impediments

    No full text
    Improving working conditions at the bottom of global value chains has become a central issue in our global economy. In this battle, trade unionism has been presented as a way for workers to make their voices heard. Therefore, it is strongly promoted by most social standards. However, establishing a well-functioning trade union is not as obvious as it may seem. Using a comparative case study approach, we examine impediments to farm-level unionism in the cut flower industry in Ethiopia. For this purpose, we propose an integrated framework combining two lenses, namely a vertical one (governance and structure of global value chains) and a horizontal one (socio-economic context). We identify 10 impediments that point to three major dimensions contributing to unionisation. These three dimensions include awareness of and interest from workers, legitimacy of trade unions, and capacity of trade unions to act. Furthermore, our results suggest that private social standards may, in certain cases, be counterproductive for the efficient functioning of trade unions. Although we argue that there is no ‘quick fix’ solution to weak workplace unionism at the bottom of global value chains, we stress the importance of considering the dynamics of, and interactions between, the impediments when designing potential support measures that mitigate negative impacts
    • …
    corecore